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1. Introduction

B Train localization: important for safety of railway systems
B Too much ground equipment in conventional methods

Strong demand for onboard train localizing system!

2. Related work

Problem of relative positioning

B Drift error, bias error, temperature dependence — accumulated error

Demand for absolute positioning
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Requirements

B Seeking unchanging features
B Avoiding expensive sensors (3D LIDAR, laser doppler velocimeter)
B Using high-sampling-rate sensors for high-speed railways

3. Methodology

System overview
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(3 Structure identification with 1D LiDAR

(D Continuous and relative positioning using TG and IMU
B Kalman filter using TG (xr¢), IMU (a;y) and traction force (F,;,)
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(2) Absolute positioning using GNSS in open-sky area
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(3 Structure identification with 1D LiDAR

Creating point cloud data using estimated
position x and 1D LIDAR measurement
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4. Experimental validation

Test train vehlcle

1D LIDAR placement
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Experimental result: Errors of estimated train position
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No. Method | RMS [m] | Max. error(abs) [m] | B Only using TG & IMU is insufficient due to
1 TG+IMU 6.59 16.3 accumulated error
1 TG+IMU+GNSS 6.86 14.5
1 TG+IMU+StrID 2.87 7.65 | M Structure identification using
1 TGHMU+SUID+GNSS 5.60 14.5 1D LiDAR enhances localization accuracy
2 TG+IMU 19.3 45.0
2 TGHMU+GNSS 6.43 134 | m GNSS is suffer from measurement delay
2 TG+IMU+StrID+GNSS 6.15 13.4 B Calculati . Glteri . )
3 TG IMU S0 517 alculation time, filtering In receiver
3 TG+IMU+GNSS 6.71 15.7 (black box)
3 TG+IMU+StrID 2.67 6.75
3 TG+IMU+StrID+GNSS 6.09 15.7 o
4 TG+IMU 3.86 8.18 S Rew ]
4 TG+IMU+GNSS 5.55 11.2 ey 2
4 TG+IMU+StrID 3.45 8.52 Nl
4 TG+IMU+StrID+GNSS 5.45 11.2
*The ground truth is created using a non-causal offline process using ‘é 155-
GNSS, IMU, TG, and Trackmap. This means that the ground truth & ok

cannot be obtained in real time.
**“No.” indicates the number of test runs.
*StrID” 1s the abbreviation of “Structure IDentification.”
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Identification failure (eliminated by the test)

nod only using inexpensive sensors

structure identification

B Several meters of RMSE, ~70% suppressing maximum error

; Future work

GNSS time delay compensation, Improving environmental robustness
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